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NOMENCLATURE 

specific heat of slab; 
thermal conductivity of slab; 
slab thickness ; 

::Lx)T:ig; 
time; 
slab temperature (absolute); 
initial slab temperature (absolute) ; 
distance; 
X/L. 

Greek Symbols 
AX, incremental step length in X-direction; 
A+, incremental step length in T-direction; 
c, emis,ivity of slab surface; 
0, TIC; 
P. density of slab; 
0, Stefan-Boltzmann constant ; 
7, kt/pCL2. 

INTRODUCTION 
TRANSIENT heat conduction with radiation boundary con- 
ditions arises in a range of heat-transfer problems. Since 
such problems are essentially non-linear, numerical or 
other approximate methods of solution must be used. The 
object of this note is to evaluate the suitability of a 
number of approximate methods by applying them to the 
same problem. 

THE PROBLEM 
The problem discussed is that previously considered by 

Fairall et al. [l] and Schneider [2, 31. A slab of finite 
thickness is considered, with radiation at one face to a 
sink at absolute zero temperature and perfect insulation 
at the other. In non-dimensional form the relevant 
equations are 

a9 820 - = ._ 
a7 ax2 

This problem, although somewhat idealized, represents 
certain physical situations [l] and will provide a basis for 
comparing the various methods of solution. 

METHODS OF SOLUTION 

Fairall et al. [l] have previously used an explicit finite 
difference technique proposed by Dusinberre [4]. In a 
similar problem Schneider [2,3] has employed an integral 
method assuming the temperature distribution through- 
out the slab to be a quadratic function of distance. In the 
present work the implicit Crank-Nicolson finite difference 
method [5] and analogue computation have been used. 
In addition an integral solution employing a cubic 
temperature profile has been obtained and the results 
given by Fairall and Schneider have been recomputed for 
comparison purposes. 

RESULTS 

All numerical calculations were performed on a 
National Elliott 803 digital computer. The explicit 
method was applied with values of AX = 0.1 and 0.05. 
The results obtained were in reasonable agreement with 
those of Fairall et al. although convergence was not 
complete particularly at X = 1. Further calculations with 
smaller values of AX would have been desirable but the 
computations were rather time-consuming and were not 
continued. This feature of the explicit method is due to 
the small values of AT required for stability of the 
solution. 

The implicit method was used with values of AX of @l, 
0.05 and 0.025 and values of AT of 0.02, 0.01 and 0.005. 
Inspection of the results indicated that convergence was 
virtually complete for AX = 0.1 and AT = 0.01 although 
it is believed that large values of the radiation parameter 
N would require a smaller value of AT. Despite its 
iterative nature, the implicit method was considerably 
faster than the explicit method due to the choice of AT not 
being limited by stability considerations. However, the 
modulus M should not be too small (say > 1) otherwise 
the solution oscillates for small values of 1. 

Due to limitations of equipment the analogue compu- 
tations were carried out with AX = 0.2. The solutions 
were slowed down by a factor of 25 in order for them to 
be compatible with the recording equipment. 

In general, the discrepancies between the various 
methods are greater for large N and as X-t 1. Typical 
results are shown in Fig. 1 for N = 10 and X = 1 and 
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FIG. 1. 

were obtained by analogue computations (AX = 0.2), the 
explicit method (AX = O*l), the implicit method 
(AX = 0.1, AT = @Ol) and the integral method (quad- 
ratic and cubic profiles). 

The explicit method converges rather slowly and, since 
it is timeconsuming, is inferior to the implicit method. 
The integral solution employing a quadratic profile also 
gives satisfactory results but the solution based on a cubic 
profile is substantially in error. This problem appears to 
be one of the cases where increasing the degree of the 
polynomial used decreases the accuracy of the solution. 
Goodman 161 remarks upon this possibility. It should be 
noted that the integral solution (quadratic profile) given 
in Fig. 1. has been recalculated by the author from the 
equations given in reference 2. The curves given in 
reference 3 (Chart 52) appear to be in error particularly 
in the region 0.1 < 7 < 1.0. 

CONCLUSIONS 

The implicit Crank-Nicolson method is recommended 
for digital computation. The explicit Dusinberre method 
converges rather gradually and is relatively slow because 
of the limitation imposed on AT by stability considera- 
tions. The analogue computation technique is satisfactory 

even for a rather large value of AX. The integral solution 
(quadratic profile) is satisfactory and rapid to use but the 
cubic profile solution is not recommended. 
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